Python Basics
Course Duration: 40 hrs
Trainer: Prathima
Training Date: Nov 2nd – Nov 6th (8 hrs each day)
Contents
INTRODUCTION TO PYTHON
Course Outline
- Course Introduction
 1.1. Course Curriculum Overview
 1.2. Why Python?
- Python Setup
 2.1. Command Line Basics
 2.2. Installing Python (Step by Step)
 2.3. Running Python Code.
 2.4. Getting the Notebooks [Anaconda, spyder]
- Python Object and Data Structure Basics
 3.1. Introduction to Python Data Types
 3.2. Python Numbers
 3.3. Numbers: Simple Arithmetic
 3.4. Variable Assignments
 3.5. Introduction to Strings
 3.6. Indexing and Slicing with Strings
 3.7. String Indexing
 3.8. String Slicing
 3.9. String Properties and Methods
 3.10. Print Formatting with Strings
 3.11. Lists in Python
 3.12. Dictionaries in Python
 3.13. Tuples with Python
 3.14. Sets in Python
 3.15. Booleans in Python
 3.16. I/O with Basic Files in Python
 3.17. List Comprehension
- Python Comparison Operators
 4.1. Comparison Operators in Python
 4.2. Chaining Comparison Operators in Python with Logical Operators
- If, Elif and Else Statements in Python
 5.1. For Loops in Python
 5.2. While Loops in Python
 5.3. Useful Operators in Python
 5.4. List Comprehensions in Python
- Methods and functions
 6.1. Methods and the Python Documentation
 6.2. Introduction to Functions
 –def Keyword
 6.3. Types of Python Functions
 6.4. Logic with Python Functions
 6.5. Tuple Unpacking with Python Functions
 6.6. Interactions between Python Functions
 6.7. Function arguments and parameters
 6.8. Default parameter values
 6.9. Functions returning values
 6.10 . Lambda functions in Python
- Object-Oriented Programming
 7.1. Object-Oriented Programming – Introduction
 7.2. Object-Oriented Programming – Attributes and Class Keyword
 7.3. Object-Oriented Programming – Class Object Attributes and Methods
 7.4. Object-Oriented Programming – Inheritance and Polymorphism
 7.5. Object-Oriented Programming – Special (Magic/Dunder) Methods
- Modules and Packages
 8.1. Pip Install and PyPi
 8.2. Modules and Packages
 8.3. __name__ and “__main__”
 8.4. Creating user-defined Modules
- Errors and Exception Handling
 9.1. Errors and Exceptions Homework
 9.2. Errors and Exception Homework – Solutions
 9.3. Update for Pylint Users
 9.4. Pylint Overview
 9.5. Running tests with the Unittest Library
- Python Decorators
 10.1. Decorators with Python Overview
 10.2. How to use Decorators with Python 3
- Python Generators
 11.1. Generators with Python
- Advanced Python Modules
 12.1. Introduction to Advanced Python Modules
 12.2. Python Collections Module
 12.3. Opening and Reading Files and Folders (Python OS Module)
 12.4. Python Datetime Module
 12.5. Python Math and Random Modules
 12.6. Python Debugger
 12.7. Python Regular Expressions Part One
 12.8. Python Regular Expressions Part Three
 12.9. Zipping and Unzipping files with Python
 12.10. Advanced Python Module Puzzle – Overview
- Web Scraping with Python
 13.1. Introduction to Web Scraping
 13.2. How to perform Web Scraping with Python, BeautifulSoup, and Requests libraries.
 13.3. Setting Up Web Scraping Libraries
 13.4. Python Web Scraping – Grabbing a Title
 13.5. Python Web Scraping – Grabbing a Class
 13.6. Python Web Scraping – Grabbing an Image
 13.7. Python Web Scraping – Book Examples
- Working with Images using Python
 14.1. Introduction to Images with Python
 14.2. How to use Python to work with image data
- Emails with Python
 15.1. Introduction to Emails with Python
 15.2. Sending Emails with Python
 15.3. Receiving Emails with Python
- Graphical User Interfaces with Tkinter
 16.1. Introduction to Tkinter
 16.2. Setting up a GUI with Widgets
 16.3. Connecting GUI Widgets with Callback Functions
 16.4. Create a Multi-widget GUI (Practice)
- Python NumPy
 17.1. Intro to NumPy(Numerical Python)
 17.2. Creating NumPy Arrays
 17.3. NumPy Array Indexing
 17.4. Array Slicing
 17.5. Data Types in NumPy
 17.6. NumPy Copy vs View
 17.7. NumPy Array Shape
 17.8. NumPy Array Reshape
 17.9. NumPy Array Iterating
 17.10. NumPy Array Join
 17.11. NumPy Array Split
 17.12. NumPy Array Search
 17.13. NumPy Array Sort
 17.14. NumPy Array Filter
 17.15. NumPy Random
 17.16. NumPy ufunc
- Python Pandas
 18.1. Python Pandas – Introduction
 18.2. Python Pandas – Environment Setup
 18.3. Introduction to Data Structures
 18.4. Python Pandas – Series
 18.5. Python Pandas – DataFrame
 18.6. Python Pandas – Panel
 18.7. Python Pandas – Basic Functionality
 18.8. Python Pandas – Reindexing
 18.9. Python Pandas – Iteration
 18.10. Python Pandas – Sorting
 18.11. Working with Text Data
 18.12. Indexing & Selecting Data
 18.13. Python Pandas – Window Functions
 18.14. Python Pandas – Aggregations
 18.15. Python Pandas – Missing Data
 18.16. Python Pandas – GroupBy
 18.17. Python Pandas – Merging/Joining
 18.18. Python Pandas – Concatenation
 18.19. Date Functionality
 18.20. Timedelta
 18.21. Categorical Data
 18.22. Visualization
 18.23. IO Tools
 18.24. Sparse Data
Trainer Summary:
Prathima is a Data Science and Java Trainer with over 18 years of experience with a demonstrated history of working in the information technology and services industry. Skilled in Python (Programming Language), HTML5, CSS3, JavaScript, Bootstrap, AngularJS, Java/J2EE, C/C++, OpenGL, PHP, MySQL, etc. Strong engineering professional with a MTech focused on Data Science with Python, Machine Learning with Python and Java Technologies.
